
ACT-R 5.0/HOT
(Hands-on Tutorial)

 Mike Schoelles
Rensselaer Polytechnic Institute

 CogWorks Laboratory
schoem@rpi.edu

Frank Ritter
Penn State University

Applied Cognition Laboratory
ritter@ist.psu.edu

Slides with * from
 Introduction to ACT 5.0 Tutorial by Christian Lebiere,

http://act-r.psy.cmu.edu/tutorials/

Loading and Running ACT-R
for PCs

Using ACL
1. Launch via Start > ACL Professional > ACL Profession with Func

IDE
2. Go to File > Load. Choose the file C:\ACT-R

Environment\loader.lisp.
3. Many warnings appear.
4. (ACT-R 5 is loaded at this point.)
5. Using Windows Explorer, launch the ACT-R environment via

C:\ACT-R Environment\Start Environment
6. Back in ACL, enter the command (start-environment) to start and

(stop-environment) to stop. Note that in the ACT-R control
panel, the Open Model command should not be used; Load
Model should be used instead. Also, all editing must be done
in an outside editor, not in the environment.

Loading and Running ACT-R

for Mac
 [There should be a folder on the top level of the disk, with alias to

all these parts]
 Double click the MACL 5.0 icon
 Choose the File: Load file... menu item
 Navigate to to the HOT ACT-R folder and load "loader.lisp"

 Find the Start OSX Environment and double-click it
 Type to the MACL prompt "(start-environment) <CR>"

 The control pane should then have buttons on it.

Tutorial Overview

Cognitive Architecture/Modeling Overview

ACT-R Theory Overview

Addition,counting and letter models

Build a model (Dialing Model)

ACT-R Theory Details

Sternberg and Building Sticks models

Future directions for ACT-R

What is a Cognitive
Architecture?

Infrastructure for an intelligent system

Cognitive functions that are constant over
time and across different task domains

Analogous to a building, car, or computer

Unified Theories of Cognition

Account of intelligent behavior at the
system-level
Newell’s claim

“You can’t play 20 questions with nature
and win”

Integrated Cognitive
Architecture

Cognition doesn’t function in isolation
Interaction with perception, motor, auditory, etc.
systems

Embodied cognition
Represents a shift from

• “mind as an abstract information processing system”
• Perceptual and motor are merely input and output systems

Must consider the role of the environment
Other body processes

• Effects of caffeine, stress and other moderators

Motivations for a Cognitive Architecture *

1. Philosophy: Provide a unified understanding of the mind.

2. Psychology: Account for experimental data.

3. Education: Provide cognitive models for intelligent tutoring systems
and other learning environments.

4. Human Computer Interaction: Evaluate artifacts and help in their
design.

5. Computer Generated Forces: Provide cognitive agents to inhabit
training environments and games.

6. Neuroscience: Provide a framework for interpreting data from brain
imaging.

7. All of the above

Requirements for Cognitive Architectures*

1. Integration, not just of different aspects of higher
level cognition but of cognition, perception, and
action.

2. Systems that run in real time.

3. Robust behavior in the face of error, the
unexpected, and the unknown.

4. Parameter-free predictions of behavior.

5. Learning.

Newell’s Time Scale of Human Activity
(amended)

Taxonomy
Computational

Cognitive Models

Connectionist

Cognitive Architectures

MathematicalSymbolic

Other AI

other Production System

ACT-R 5.0

HybridSymbolic only

SOAR EPIC

Other Cognitive Architectures
Soar

Production rule system
• Organized in terms of operators associated with problem spaces
• Goal oriented

– Sub-goaling
• Learning mechanism - Chunking

EPIC
Parallel firing of production rules
Well developed visual and motor system

ACT-R Overview

Modules (buffers)
Knowledge Representation
Symbolic/Sub-symbolic
Performance/Learning

History of the ACT-framework*

Predecessor HAM (Anderson & Bower 1973)

Theory versions ACT-E (Anderson, 1976)
 ACT* (Anderson, 1978)
 ACT-R (Anderson, 1993)
 ACT-R 4.0 (Anderson & Lebiere, 1998)
 ACT-R 5.0 (Anderson & Lebiere, 2001)

Implementations GRAPES (Sauers & Farrell, 1982)
 PUPS (Anderson & Thompson, 1989)
 ACT-R 2.0 (Lebiere & Kushmerick, 1993)
 ACT-R 3.0 (Lebiere, 1995)
 ACT-R 4.0 (Lebiere, 1998)
 ACT-R/PM (Byrne, 1998)
 ACT-R 5.0 (Lebiere, 2001)
 Windows Environment (Bothell, 2001)
 Macintosh Environment (Fincham, 2001)

I. Perception & Attention
 1. Psychophysical Judgements
 2. Visual Search
 3. Eye Movements
 4. Psychological Refractory Period
 5. Task Switching
 6. Subitizing
 7. Stroop
 8. Driving Behavior
 9. Situational Awareness
 10. Graphical User Interfaces

II. Learning & Memory
 1. List Memory
 2. Fan Effect
 3. Implicit Learning
 4. Skill Acquisition
 5. Cognitive Arithmetic
 6. Category Learning
 7. Learning by Exploration
 and Demonstration
 8. Updating Memory &
 Prospective Memory
 9. Causal Learning

~ 100 Published Models in ACT-R 1997-2002*
III. Problem Solving & Decision Making
 1. Tower of Hanoi
 2. Choice & Strategy Selection
 3. Mathematical Problem Solving
 4. Spatial Reasoning
 5. Dynamic Systems
 6. Use and Design of Artifacts
 7. Game Playing
 8. Insight and Scientific Discovery

IV. Language Processing
 1. Parsing
 2. Analogy & Metaphor
 3. Learning
 4. Sentence Memory

V. Other
 1. Cognitive Development
 2. Individual Differences
 3. Emotion
 4. Cognitive Workload
 5. Computer Generated Forces
 6. fMRI
 7. Communication, Negotiation,

 Group Decision Making

Visit http://act.psy.cmu.edu/papers/ACT-R_Models.htm link.

ACT-R 5.0 Architecture

Motor
Modules

Current
Goal

Perceptual
Modules

Declarative
Memory

Pattern Matching
And

Production Selection

Check
RetrieveModify

Test

Check
 State Schedule

Action

Identify
Object

Move
Attention

ACT-R 5.0

Environment

ACT-R 5.0 Mapping to the Brain*

Environment

Pr
od

uc
tio

ns
(B

as
al

 G
an

gl
ia

)

Retrieval Buffer
(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer
(DLPFC)

Visual Buffer
(Parietal)

Manual Buffer
(Motor)

Manual Module
(Motor/Cerebellum)

Visual Module
(Occipital/etc)

Intentional Module
(not identified)

Declarative Module
(Temporal/Hippocampus)

ACT-R: Assumption Space*

Interactive Session

Load and run Addition model

Addition model exercise
In this exercise you will load a simple model and run it to see how a model runs.

You will also get some experience with the interface.

 1. Open model

Click on the "Open Model" button on the Environment Control Pane, and select the
Addition model. This will open up the model so that you can see it and its
parts.

You should be able to see the working memory elements in the model (window
"Chunk"), the productions (Production window). There are three further
windows, Chunk Type, Command, and Miscellaneous, that we will cover later.

You should briefly examine the chunk and production contents. You may note that
there about 11 pieces of working memory, and just 4 rules in this system.

2. Run the model

You can run the model using the Lisp command line, but we will
use the environment because it provides a recognition-based
interface rather than a recall-based interface.

You should first click on "Reset"; thi s will reset the model and
make it ready to run. You can do this to a model that has run as
well, or has been stopped in the middel of a run.

You can run the model by clicking on the "Run" button. A trace of
the model will appear in the (Lisp) "Listener" window. You can
see how the order that rules are selected and fired, as well as
when chunks are retrieved from memory by the rules.

3. Inspect the model

Click on "Declarative viewer" in the Control Pane to
bring up an inspector window for the declarative
memory elements. If you scroll, you can find the
chunks a-j and second-goal. Pay most attention to
their structure, and note that they have several
parameters. These parameters are used to compute
how fast they are used and if they can be retrieved.
With learning and use, the activation, for example,
goes up. These are covered later in this tutorial.

The Procedural viewer provides a view onto the rules.

ACT-R: Knowledge Representation*

ß goal buffer
ß visual buffer
ß retrieval buffer

ADDITION-FACT

ADDEND1 THREE

ADDEND2 FOUR

SUM

FACT3+4(

SEVEN)

isa

Chunks: Example*

CHUNK-TYPE NAME SLOT1 SLOT2 SLOTN()

Chunks: Example*

(CLEAR-ALL)
(CHUNK-TYPE addition-fact addend1 addend2 sum)
(CHUNK-TYPE integer value)
(ADD-DM (fact3+4

isa addition-fact
addend1 three
addend2 four
sum seven)

(three
isa integer
value 3)

(four
isa integer
value 4)

(seven
isa integer
value 7)

ADDITION-FACT

FACT3+4
ADDEND1 SUM

ADDEND2

THREE

FOUR

SEVEN

isa

isa

INTEGER

isa

VALUE VALUE

3 7

isa

Chunks: Example*

VALUE

4

A Production is*

1. The greatest idea in cognitive science.

2. The least appreciated construct in cognitive science.

3. A 50 millisecond step of cognition.

4. The source of the serial bottleneck in otherwise parallel
system.

5. A condition-action data structure with “variables”.

6. A formal specification of the flow of information from
cortex to basal ganglia and back again.

Key Properties • modularity
• abstraction
• goal/buffer factoring
• conditional asymmetry

Productions*

(p

==>

)

Specification of
Buffer Transformations

condition part

delimiter

action part

name

Specification of
Buffer Tests

Structure of productions

Interactive Session

Load and run Counting model

Count model

This model works much like the previous model, but prints out its count.

 1. Open the model

Either quit and restart your Lisp, or else click on "Close Model".

Open the Count model by clicking on "Open Model" and then selecting the Count model.

Run the model to see its trace, and examine its rules and chunks.

 2. Using the Stepper

Click on "Stepper", and a stepper window should appear.

Reset the model, and then click on the run button. This starts the stepper. You can now step
through the model by clicking on the "Step" button on the Stepper.

As you step through the model, you should be able to see most of the mechanisms in ACT-R
now, the productions, how they are matched, the chunks, and how they are retrieved, and
the buffers (click on Buffer Viewer to see the buffers and their contents).

3. Checking on a rule that does not fire.

 After you have run the model a few steps, click on the Procedural
Viewer. Select a rule in the dialogue box, and see why it does not fire.

 4. Edit the model

Look at the model and consider how to have it count backwards.

You can change the production rules in the Production window. After
you make changes, save the model (it will automatically increment).
Close the model and reopen it to try your new model.

The Modules(reprise)

Cognition
Memory
Vision
Motor
Audition
Speech

ACT-R 5.0 Buffers*

1. Goal Buffer (=goal, +goal)
 -represents where one is in the task
 -preserves information across production cycles

2. Retrieval Buffer (=retrieval, +retrieval)
 -holds information retrieval from declarative memory
 -seat of activation computations
3. Visual Buffers
 -location (=visual-location, +visual-location)
 -visual objects (=visual, +visual)
 -attention switch corresponds to buffer transformation
4. Auditory Buffers (=aural, +aural)
 -analogous to visual
5. Manual Buffers (=manual, +manual)
 -elaborate theory of manual movement include feature

preparation, Fitts law, and device properties
6. Vocal Buffers (=vocal, +vocal)
 -analogous to manual buffers but less well developed

Cognition

Executive Control - Production System
Serial
Parallel at sub-symbolic level

Utility selects production to fire
Utility = benefit - cost

• Benefit = probability of success * value of achieving
goal

Production System Cycle
Match conditions of all rules to buffers
Those that match enter the conflict set
Conflict resolution selects a rule to fire
Action side of rule initiates changes to one
or more buffers
If no production can match and no action is
in progress then quit else repeat

Goal directed

Represents what you are trying to do
A declarative memory element that is
the focus of “internal” attention

Memory Module
Activation based

Frequency and recency
Contextual cues

Cognition
Requests retrieval

• Specifies constraints
• Partial matching

Memory
Parallel search of memory to match constraints
Calculates activation of matching chunks
Returns most active chunk

Vision Module

ACT-R’s “eyes”
Dorsal “where” system
Ventral “what” system

“Where” System
Cognition

Requests “pre-attentive” visual search
Specifies a set of constraints
Attribute/value pairs

• Properties or spatial location
– e.g. color red, screen-x greater-than 150

“Where” system
 Returns a “location” chunk

• Specifies location of an object whose features satisfy the
constraints

Onsets
Features are held in vision module’s memory

Vision Module Memory

“What” System
Cognition

Requests “move attention”
 Provides “location” chunk

“Where” System
Shifts visual attention to that location
Encodes object at that location

• Added to Declarative Memory
• Episodic representation of visual scene

Places encoding in “visual” buffer
Calculates latency

• EMMA

Motor Module

ACT-R’s Hands
Based on EPIC’s Manual Motor
Processor
Movement Styles
Phased Processing

Movement Styles

Ply - moves a device (e.g. mouse) to a given
location
Punch - pressing a key below finger
Peck - directed movement of finger to a
location followed by keystroke
Peck-recoil - same as peck but finger moves
back
Point-hand - moves hand to a new location

Phased Processing (1)

Preparation Phase
Hierarchical feature preparation

• Style->hand->finger
Prep time depends on

• Complexity of movement
• Number of features

State buffer set to prep busy

Phased Processing (2)
Initiation (fixed 50 ms)
Execution

• Time depends on
– Type of movement

– Minimum execution time
– Distance

– Fitt’s Law

Allow overlapping of preparation and execution

Interactive Session

Load and run Letter model

Device Interface
Simulated device with which ACT-R interacts

Contains graphical objects
Typically a Window

Can be entire screen
Interaction

Constructing vision system’s iconic memory (sets
of features) from graphical objects
Handle mouse and keyboard actions

Audition Module

Simulated perception of audio
Memory of features

Temporal-extent - sound events
Tones, digits, and speech
Attributes

Onset, duration, delay, recode time

Audition Module Processing
Parallels vision system
Cognition

Specifies a set of constraints
Attribute/value pairs

Audition
Returns a “location” chunk

Cognition
Requests shift of auditory attention providing the
“location”chunk

Audition
Encodes the sound

Sub-symbolic level
Sub-symbolic learning allow the system to adapt to the
statistical structure of the environment

Production Utilities are responsible for determining which
productions get selected when there is a conflict.

Chunk Activations are responsible for determining which (if
any chunks) get retrieved and how long it takes to retrieve
them.

Chunk Activations have been simplified in ACT-R 5.0 and a
major step has been taken towards the goal of parameter-free
predictions by fixing a number of the parameters.

Parameters

Noise
Utility and activation

Learning
Activation - frequency and recency
Utility - probability and cost

Thresholds
Utility and activation

Build Dialing Model

Detailed ACT-R theory

Activation equation
Production Utility equation
Production Compilation

Chunk i

Seven

Three Four
Addend1 Addend2

Sum

=Goal>
isa write
relation sum
arg1 Three
arg2 Four

+
Conditions

+Retrieval>
isa addition-fact
addend1 Three
addend2 Four

+
Actions

Sji

Sim kl

Bi

Activation*

Chunk Activation*

base
activation

activation = +

Activation makes chunks available to the degree that past experiences
indicate that they will be useful at the particular moment:

Base-level: general past usefulness
Associative Activation: relevance to the general context
Matching Penalty: relevance to the specific match required
Noise: stochastic is useful to avoid getting stuck in local minima

associative
strength

source
activation()*

similarity
value

mismatch
penalty()*+ + noise

Activation, Latency and Probability*

• Retrieval time for a chunk is a negative
exponential function of its activation:

• Probability of retrieval of a chunk follows the
Boltzmann (softmax) distribution:

• The chunk with the highest activation is retrieved
provided that it reaches the retrieval threshold t

• For purposes of latency and probability, the
threshold can be considered as a virtual chunk

Base-level Activation*

The base level activation Bi of chunk Ci reflects a context-
independent estimation of how likely Ci is to match a production, i.e.
Bi is an estimate of the log odds that Ci will be used.

Two factors determine Bi:

• frequency of using Ci

• recency with which Ci was used

Bi = ln ()
P(Ci)
P(Ci)

Ai = Bi

base
activation

activation =

Source Activation*

The source activations Wj reflect the amount of attention
given to elements, i.e. fillers, of the current goal. ACT-R
assumes a fixed capacity for source activation

W= S Wj reflects an individual difference parameter.

associative
strength

source
activation()+ *

+ S Wj * Sjij

Associative Strengths*

The association strength Sji between chunks Cj and Ci is a measure of
how often Ci was needed (retrieved) when Cj was element of the goal,
i.e. Sji estimates the log likelihood ratio of Cj being a source of
activation if Ci was retrieved.

associative
strength

source
activation()+ *

+ S Wj * Sji

()P(Ni Cj)
P(Ni)

Sji = ln

= S - ln(P(Ni|Cj))

Partial Matching*

• The mismatch penalty is a measure of the amount of control over memory
retrieval: MP = 0 is free association; MP very large means perfect matching;
intermediate values allow some mismatching in search of a memory match.

• Similarity values between desired value k specified by the production and
actual value l present in the retrieved chunk. This provides generalization
properties similar to those in neural networks; the similarity value is
essentially equivalent to the dot-product between distributed
representations.

similarity
value

mismatch
penalty()*+

Noise*

• Noise provides the essential stochasticity of human behavior
• Noise also provides a powerful way of exploring the world
• Activation noise is composed of two noises:

• A permanent noise accounting for encoding variability
• A transient noise for moment-to-moment variation

+ noise

Base-Level Learning*

Based on the Rational Analysis of the Environment
(Schooler & Anderson, 1997)

Base-Level Activation reflects the log-odds that a chunk
will be needed. In the environment the odds that a fact
will be needed decays as a power function of how long it
has been since it has been used. The effects of multiple
uses sum in determining the odds of being used.

 Base-Level Learning Equation

 ≈ n(n / (1-d)) - d*n(L)

Note: The decay parameter d has been set to .5 in most
ACT-R models

Interactive Session

Load and run Sternberg model

P is expected probability of success
G is value of goal
C is expected cost

t reflects noise in evaluation
and is like temperature in
the Bolztman equation

a is prior successes
m is experienced successes
b is prior failures
n is experienced failures

Production Utility*

Decay of Experience*

Note: Such temporal weighting is critical in the real world.

Interactive Session

Load and run Building Sticks model

Production Compilation: The Basic Idea*

(p read-stimulus
 =goal>
 isa goal
 step attending
 state test
 =visual>
 isa text
 value =val
==>
 +retrieval>
 isa goal
 relation associate
 arg1 =val
 arg2 =ans
 =goal>
 relation associate
 arg1 =val
 step testing)

(p recall
 =goal>
 isa goal
 relation associate
 arg1 =val
 step testing
 =retrieval>
 isa goal

 relation associate
 arg1 =val
 arg2 =ans
==>
 +manual>
 isa press-key
 key =ans
 =goal>
 step waiting)

(p recall-vanilla
 =goal>
 isa goal
 step attending
 state test
 =visual>
 isa text
 value "vanilla
==>
 +manual>
 isa press-key
 key "7"
 =goal>
 relation associate
 arg1 "vanilla"
 step waiting)

Production Compilation: The Principles*

1. Perceptual-Motor Buffers: Avoid compositions that will result in
jamming when one tries to build two operations on the same buffer
into the same production.

2. Retrieval Buffer: Except for failure tests proceduralize out and
build more specific productions.

3. Goal Buffers: Complex Rules describing merging.

4. Safe Productions: Production will not produce any result that the
original productions did not produce.

5. Parameter Setting:
Successes = P*initial-experience*
Failures = (1-P) *initial-experience*
Efforts = (Successes + Efforts)(C + *cost-penalty*)

Future Directions

ACT-R 6.0
Design goals

• More modular
• Consistent and uniform syntax
• Consistent treatment of buffers
• Parameter simplification

Model behavior in more complex real
world environments

More Information

ACT-R Home Page: http://act.psy.cmu.edu

Acknowledgements

Support for this tutorial was provided by
grants from the US Office of Naval Research,
N00014-03-1-0248 , and by the Naval
Warfare Systems Center, # N6600-01-1-
8916.

